

    
      
          
            
  
TestSlide

A test framework for Python that enable unit testing [https://docs.python.org/3/library/unittest.html] / TDD [https://en.wikipedia.org/wiki/Test-driven_development]/ BDD [https://en.wikipedia.org/wiki/Behavior-driven_development] to be productive and enjoyable.

Its well behaved mocks with thorough API validations catches bugs both when code is first written or long in the future when it is changed.

The flexibility of using them with existing unittest.TestCase or TestSlide’s own test runner let users get its benefits without requiring refactoring existing code.


Quickstart

Install the package:

pip install TestSlide





Scaffold the code you want to test backup.py:

class Backup:
  def delete(self, path):
    pass





Write a test case backup_test.py describing the expected behavior:

import testslide, backup, storage

class TestBackupDelete(testslide.TestCase):
  def setUp(self):
    super().setUp()
    self.storage_mock = testslide.StrictMock(storage.Client)
    # Makes storage.Client(timeout=60) return self.storage_mock
    self.mock_constructor(storage, 'Client')\
      .for_call(timeout=60)\
      .to_return_value(self.storage_mock)

  def test_delete_from_storage(self):
    # Set behavior and assertion for the call at the mock
    self.mock_callable(self.storage_mock, 'delete')\
      .for_call('/file/to/delete')\
      .to_return_value(True)\
      .and_assert_called_once()
    backup.Backup().delete('/file/to/delete')





TestSlide’s StrictMock , mock_callable() and mock_constructor() are seamlessly integrated with Python’s TestCase.

Run the test and see the failure:

[image: Test failure]
TestSlide’s mocks failure messages guide you towards the solution, that you can now implement:

import storage

class Backup:
  def __init__(self):
    self.storage = storage.Client(timeout=60)

  def delete(self, path):
    self.storage.delete(path)





And watch the test go green:

[image: Test pass]
It is all about letting the failure messages guide you towards the solution. There’s a plethora of validation inside TestSlide’s mocks, so you can trust they will help you iterate quickly when writing code and also cover you when breaking changes are introduced.


Contents:


	Test Runner
	Listing Available Tests

	Multiple Failures Report

	Failing Fast

	Focus and Skip

	Path Simplification

	Internal Stack Trace

	Shuffled Execution

	Slow Imports Profiler

	Code Coverage

	Tip: Automatic Test Execution





	StrictMock
	Yet Another Mock?

	Thorough API Validations
	Safe By Default

	Attribute Existence

	Attribute Type

	Method Signature

	Method Argument Type

	Method Return Type

	Setting Methods With Callables

	Setting Async Methods With Coroutines





	Configuration
	Naming

	Template Class

	Setting Regular Attributes

	Setting Methods

	Setting Magic Methods

	Runtime Attributes

	Default Context Manager

	Signature Validation

	Type Validation





	Misc Functionality





	Patching
	patch_attribute()
	Type Validation





	mock_callable()
	Defining a Target

	Defining Accepted Calls

	Defining Call Behavior

	Defining Call Assertions

	Cheat Sheet

	Magic Methods

	Type Validation

	Test Framework Integration





	mock_async_callable()
	.with_implementation()

	.with_wrapper()

	Implicit Coroutine Return

	Test Framework Integration





	mock_constructor()
	Type Validation

	Caveats

	Test Framework Integration





	Argument Matchers
	Logic Operations

	Integers

	Floats

	Strings

	Lists

	Dictionaries

	Collections

	Generic





	Cheat Sheet





	TestSlide’s DSL
	Contexts and Examples
	Sub Examples

	Explicit names





	Sharing Contexts
	Merging

	Nesting

	Parameterized shared contexts





	Context Hooks
	Before

	After

	Around





	Context Attributes and Functions
	Attributes

	Functions





	Skip and Focus
	Focus

	Skip





	unittest.TestCase Integration
	Assertions

	Reusing existing unittest.TestCase setUp





	Async Support
	Event Loop Health









	Code Snippets
	Atom













            

          

      

      

    

  

    
      
          
            
  
Test Runner

TestSlide has its own DSL that you can use to write tests, and so it comes with its own test runner. However, it can also execute tests written for Python’s unittest [https://docs.python.org/3/library/unittest.html], so you can have its benefits, without having to rewrite everything.

To use, simply give it a list of .py files containing the tests:

$ testslide calculator_test.py
calculator_test.TestCalculatorAdd
  test_add_negative: PASS
  test_add_positive: PASS
calculator_test.TestCalculatorSub
  test_sub_negative: PASS
  test_sub_positive: PASS

Finished 4 example(s) in 0.0s
  Successful:  4






Note

For documentation simplicity, the output shown here is monochromatic and boring. When executing TestSlide from a terminal, it is colored, making it significantly easier to read. Eg: green for success, red for failure.



Whatever unittest.TestCase or DSL declared in the given files will be executed. You can even mix them in the same project or file.


Note

When using patch_attribute(), mock_callable() or mock_constructor() you must inherit your test class from testslide.TestCase to have access to those methods. The test runner does not require that, and is happy to run tests that inherit directly (or indirectly) from unittest.TestCase.




Note

Tests inheriting from testslide.TestCase can also be executed by Python’s unittest CLI [https://docs.python.org/3/library/unittest.html#command-line-interface].




Listing Available Tests

You can use --list to run test discovery and list all tests found:

$ testslide --list backup_test.py
backup_test.TestBackupDelete: test_delete_from_storage







Multiple Failures Report

When using TestSlide’s mock_callable() assertions, you can have a better signal on failures. For example, in this test we have two assertions:

def test_delete_from_storage(self):
  self.mock_callable(self.storage, 'delete')\
    .for_call('/file').to_return_value(True)\
    .and_assert_called_once()
  self.assertEqual(Backup().delete('/file'), True)





Normally when a test fails, you get only signal from the first failure. TestSlide’s Test Runner can understand what you meant, and give you a more comprehensive signal, telling about each failed assertion:

$ testslide backup_test.py
backup_test.TestBackupDelete
  test_delete_from_storage: AssertionError: <StrictMock 0x7F55C5159B38 template=storage.Client>,   'delete':

Failures:

1) backup_test.TestBackupDelete: test_delete_from_storage
  1) AssertionError: None != True
    File "backup_test.py", line 47, in test_delete
      self.assertEqual(Backup().delete('/file’), True)
    File "/opt/python3.6/unittest/case.py", line 829, in assertEqual
      assertion_func(first, second, msg=msg)
    File "/opt/python3.6/unittest/case.py", line 822, in _baseAssertEqual
      raise self.failureException(msg)
  2) AssertionError: <StrictMock 0x7F55C5159B38 template=storage.Client>, 'delete':
    expected: called exactly 1 time(s) with arguments:
      ('/file',)
      {}
    received: 0 call(s)
    File "/opt/python3.6/unittest/case.py", line 59, in testPartExecutor
      yield
    File "/opt/python3.6/unittest/case.py", line 646, in doCleanups
      function(*args, **kwargs)







Failing Fast

When you change something and too many tests break, it is useful to stop the execution at the first failure, so you can iterate easier. To do that, use the --fail-fast option.



Focus and Skip

TestSlide allows you to easily focus execution of a single test, by simply adding f to the name of the test function:

def ftest_sub_positive(self):
  self.assertEqual(
    Calc().sub(1, 1), 0
  )





And then run your tests with --focus:

$ testslide --focus calc_test.py
calc.TestCalcSub
  *ftest_sub_positive: PASS

Finished 1 example(s) in 0.0s
  Successful: 1
  Not executed: 3





Only ftest tests will be executed. Note that it also tells you how many tests were not executed.

When you are committing tests to a continuous integration system, focusing tests may not be the best choice. You can
use the cli option --fail-if-focused which will cause TestSlide to fail if any focused examples are run.

Similarly, you can skip a test with x:

def xtest_sub_positive(self):
  self.assertEqual(
    Calc().sub(1, 1), 0
  )





And this test will be skipped:

$ testslide calc_test.py
calc.TestCalcAdd
  test_add_negative: PASS
  test_add_positive: PASS
calc.TestCalcSub
  test_sub_negative: PASS
  xtest_sub_positive: SKIP

Finished 4 example(s) in 0.0s
  Successful: 3
  Skipped: 1







Path Simplification

The option --trim-path-prefix selects a path prefix to remove from stack traces and error messages. This makes parsing error messages easier. It defaults to the working directory, so there’s seldom need to tweak it.



Internal Stack Trace

By default, stack trace lines that are from TestSlide’s code base are hidden, as they are only useful when debugging TestSlide itself. You can see them if you wish, by using --show-testslide-stack-trace.



Shuffled Execution

Each test must be independent and isolated from each other. For example, if one test manipulates some module level object, that the next test depends on, we are leaking the context of one test to the next. To catch such cases, you can run your tests with --shuffle: tests will be executed in a random order every time. The test signal must always be the same, no matter in what order tests run. You can tweak the seed with --seed.



Slow Imports Profiler

As projects grow with more dependencies, running a test for a few lines of code can take several seconds. This is often cause by time spent on importing dependencies, rather that the tests themselves. If you run your tests with --import-profiler $MS, any imported module that took more that that the given amount of milliseconds will be reported in a nice and readable tree view. This helps you optimize your imports, so your unit tests can run faster. Frequently, the cause of slow imports is the construction of heavy objects at module level.



Code Coverage

Coverage.py [https://coverage.readthedocs.io/en/coverage-5.1/] integration is simple. Make sure your .coveragerc file has this set:

[run]
parallel = True





and then you can run all your tests and get a report like this

$ coverage erase
$ COVERAGE_PROCESS_START=.coveragerc testslide some.py tests.py
$ COVERAGE_PROCESS_START=.coveragerc testslide some_more_tests.py
$ coverage combine
$ coverage report







Tip: Automatic Test Execution

To help iterate even quicker, you can pair testslide execution with entr [http://www.entrproject.org/] (or any similar):

find . -name \*.py | entr testslide tests/.py





This will automatically execute all your tests, whenever a file is saved. This is particularly useful when paired with focus and skip. This means you don’t have to leave your text editor, to iterate over your tests and code.





            

          

      

      

    

  

    
      
          
            
  
StrictMock

Often code we write depends on external things such as a database or a REST API. We can test our code allowing it to talk directly to those dependencies, but there are different reasons why we wouldn’t want to:


	The dependency is available as a production environment only and we can’t let a test risk breaking production.


	The dependency is not available on all environments the test is being executed, for example during a Continuous Integration build.


	We want to test different scenarios, such as a valid response, error response or a timeout.




Mocks helps us achieve this goal when used in place of a real dependency. They need to respond conforming to the same interface exposed by the dependency, allowing us to configure canned responses to simulate the different scenarios we need. This must be true if we want to trust our test results.


Yet Another Mock?

Python unittest [https://docs.python.org/3/library/unittest.html] already provides us with Mock, PropertyMock, AsyncMock, MagicMock, NonCallableMagicMock… each for a specific use case. To understand what StrictMock brings to the table, let’s start by looking at Python’s mocks.

Let’s pretend we depend on a Calculator class and we want to create a mock for it:

In [1]: from unittest.mock import Mock

In [2]: class Calculator:
   ...:   def is_odd(self, x):
   ...:     return bool(x % 2)
   ...:

In [3]: mock = Mock(Calculator)

In [4]: mock.is_odd(2)
Out[4]: <Mock name='mock.is_odd()' id='140674180253512'>

In [5]: bool(mock.is_odd(2))
Out[5]: True

In [6]: mock.is_odd(2, 'invalid')
Out[6]: <Mock name='mock.is_odd()' id='140674180253512'>





Wow! The calculator mock is lying to us telling that 2 is odd! And worse: we are able to violate the method signature without issues! How can we trust our tests with mocks like this? This is precisely the kind of problem StrictMock solves!


Note

Since Python 3.7 we can seal [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.seal] mocks. This helps, but as you will see, StrictMock has a lot unpaired functionality.





Thorough API Validations

StrictMock does a lot of validation under the hood to ensure you are configuring your mocks in conformity with the given template class interface. This has obvious immediate advantages, but is surprisingly helpful in catching bugs when refactoring happens (eg: the interface of the template class changed).


Safe By Default

StrictMock allows you to create mocks of instances of a given template class. Its default is not to give arbitrary canned responses, but rather be clear that it is missing some configuration:

In [1]: from testslide import StrictMock

In [2]: class Calculator:
   ...:     def is_odd(self, x):
   ...:         return bool(x % 2)
   ...:

In [3]: mock = StrictMock(template=Calculator)

In [4]: mock.is_odd(2)
(...)
UndefinedAttribute: 'is_odd' is not defined.
<StrictMock 0x7F17E06C7310 template=__main__.Calculator> must have a value defined for this attribute if it is going to be accessed.





So, let’s define is_odd method:

In [5]: mock.is_odd = lambda number: False

In [6]: mock.is_odd(2)
Out[6]: False





Any undefined attribute access will raise UndefinedAttribute. As you are in control of what values you assign to your mock, you can trust it to do only what you expect it to do.


Note


	Refer to mock_callable() to learn to tighten what arguments is_odd() should accept.


	Refer to mock_constructor() to learn how to put StrictMock in place of your dependency.







Safe Magic Methods Defaults

Any magic methods defined at the template class will also have the safe by default characteristic:

In [1]: from testslide import StrictMock

In [2]: class NotGreater:
   ...:     def __gt__(self, other):
   ...:         return False
   ...:

In [3]: mock = StrictMock(template=NotGreater)

In [4]: mock > 0
(...)
UndefinedAttribute: '__gt__' is not set.
<StrictMock 0x7FE849B5DCD0 template=__main__.NotGreater> must have a value set for this attribute if it is going to be accessed.








Attribute Existence

You won’t be allowed to set an attribute to a StrictMock if the given template class does not have it:

In [1]: from testslide import StrictMock

In [2]: class Calculator:
   ...:   def is_odd(self, x):
   ...:     return bool(x % 2)
   ...:

In [3]: mock = StrictMock(template=Calculator)

In [4]: mock.invalid
(...)
AttributeError: 'invalid' was not set for <StrictMock 0x7F4C62423F10 template=__main__.Calculator>.

In [4]: mock.invalid = "whatever"
(...)
CanNotSetNonExistentAttribute: 'invalid' can not be set.
<StrictMock 0x7F4C62423F10 template=__main__.Calculator> template class does not have this attribute so the mock can not have it as well.
See also: 'runtime_attrs' at StrictMock.__init__.






Dynamic Attributes

This validation works even for attributes set by __init__, as StrictMock introspects the code to learn about them:

In [1]: from testslide import StrictMock
   ...:

In [2]: class DynamicAttr:
   ...:     def __init__(self):
   ...:          self.dynamic = 'set from __init__'
   ...:

In [3]: mock = StrictMock(template=DynamicAttr)

In [4]: mock.dynamic = 'something else'








Attribute Type

When type annotation is available for attributes, StrictMock won’t allow setting it with an invalid type:

In [1]: import testslide

In [2]: class Calculator:
   ...:     VERSION: str = "1.0"
   ...:

In [3]: mock = testslide.StrictMock(template=Calculator)

In [4]: mock.VERSION = "1.1"

In [5]: mock.VERSION = 1.2
(...)
TypeCheckError: type of VERSION must be str; got float instead







Method Signature

Method signatures must match the signature of the equivalent method at the template class:

In [1]: from testslide import StrictMock

In [2]: class Calculator:
   ...:   def is_odd(self, x):
   ...:     return bool(x % 2)
   ...:

In [3]: mock = StrictMock(template=Calculator)

In [4]: mock.is_odd = lambda number, invalid: False

In [5]: mock.is_odd(2, 'invalid')
(...)
TypeCheckError: too many positional arguments







Method Argument Type

Methods with type annotation will have call arguments validated against it and invalid types will raise:

In [1]: import testslide

In [2]: class Calculator:
   ...:     def is_odd(self, x: int):
   ...:         return bool(x % 2)
   ...:

In [3]: mock = testslide.StrictMock(template=Calculator)

In [4]: mock.is_odd = lambda x: True

In [5]: mock.is_odd(1)
Out[5]: True

In [6]: mock.is_odd("1")
(...)
TypeCheckError: Call with incompatible argument types:
  'x': type of x must be int; got str instead







Method Return Type

Methods with return type annotated will have its return value type validated as well:

In [1]: import testslide

In [2]: class Calculator:
   ...:     def is_odd(self, x): -> bool
   ...:         return bool(x % 2)
   ...:

In [3]: mock = testslide.StrictMock(template=Calculator)

In [4]: mock.is_odd = lambda x: 1
(...)
TypeCheckError: type of return must be bool; got int instead







Setting Methods With Callables

If the Template class attribute is a instance/class/static method, StrictMock will only allow callable values to be assigned:

In [1]: from testslide import StrictMock

In [2]: class Calculator:
   ...:   def is_odd(self, x):
   ...:     return bool(x % 2)
   ...:

In [3]: mock = StrictMock(template=Calculator)

In [4]: mock.is_odd = "not callable"
(...)
NonCallableValue: 'is_odd' can not be set with a non-callable value.
<StrictMock 0x7F4C62423F10 template=__main__.Calculator> template class requires this attribute to be callable.







Setting Async Methods With Coroutines

Coroutine functions (async def) (whether instance, class or static methods) can only have a callable that returns an awaitable assigned:

In [1]: from testslide import StrictMock

In [2]: class AsyncMethod:
   ...:     async def async_instance_method(self):
   ...:         pass
   ...:

In [3]: mock = StrictMock(template=AsyncMethod)

In [4]: def sync():
   ...:     pass
   ...:

In [5]: mock.async_instance_method = sync

In [6]: import asyncio

In [7]: asyncio.run(mock.async_instance_method())
(...)
NonAwaitableReturn: 'async_instance_method' can not be set with a callable that does not return an awaitable.
<StrictMock 0x7FACF5A974D0 template=__main__.AsyncMethod> template class requires this attribute to be a callable that returns an awaitable (eg: a 'async def' function).








Configuration


Naming

You can optionally name your mock, to make it easier to identify:

In [1]: from testslide import StrictMock

In [2]: str(StrictMock())
Out[2]: '<StrictMock 0x7F7A30FC0748>'

In [3]: str(StrictMock(name='whatever'))
Out[3]: "<StrictMock 0x7F7A30FDFF60 name='whatever'>"







Template Class

By giving a template class, we can leverage all interface validation goodies:

In [1]: from testslide import StrictMock

In [2]: class Calculator:
   ...:     def is_odd(self, x):
   ...:         return bool(x % 2)
   ...:

In [3]: mock = StrictMock(template=Calculator)

In [4]: mock.is_odd(2)
(...)
UndefinedAttribute: 'is_odd' is not defined.
<StrictMock 0x7F17E06C7310 template=__main__.Calculator> must have a value defined for this attribute if it is going to be accessed.






Generic Mocks

It is higly recommended to use StrictMock giving it a template class, so you can leverage its interface validation. There are situations however that any “generic mock” is good enough. You can still use StrictMock, although you’ll loose most validations:

In [1]: from testslide import StrictMock

In [2]: mock = StrictMock()

In [3]: mock.whatever
(...)
UndefinedAttribute: 'whatever' is not defined.
<StrictMock 0x7FED1C724C18> must have a value defined for this attribute if it is going to be accessed.

In [4]: mock.whatever = 'something'

In [5]: mock.whatever
Out[5]: 'something'





It will accept setting any attributes, with any values.




Setting Regular Attributes

They can be set as usual:

In [1]: from testslide import StrictMock

In [2]: mock = StrictMock()

In [3]: mock.whatever
(...)
UndefinedAttribute: 'whatever' is not defined.
<StrictMock 0x7FED1C724C18> must have a value defined for this attribute if it is going to be accessed.

In [4]: mock.whatever = 'something'

In [5]: mock.whatever
Out[5]: 'something'





Other than if the attribute is allowed to be set (based on the optional template class), no validation is performed on the value assigned.



Setting Methods

You can assign callables to instance, class and static methods as usual. There’s special mechanics under the hood to ensure the mock will receive the correct arguments:

In [1]: from testslide import StrictMock
   ...:

In [2]: class Echo:
   ...:   def instance_echo(self, message):
   ...:     return message
   ...:
   ...:   @classmethod
   ...:   def class_echo(cls, message):
   ...:     return message
   ...:
   ...:   @staticmethod
   ...:   def static_echo(message):
   ...:     return message
   ...:

In [3]: mock = StrictMock(template=Echo)
   ...:

In [4]: mock.instance_echo = lambda message: f"mock: {message}"
   ...:

In [5]: mock.instance_echo("hello")
   ...:
Out[5]: 'mock: hello'

In [6]: mock.class_echo = lambda message: f"mock: {message}"
   ...:

In [7]: mock.class_echo("hello")
   ...:
Out[7]: 'mock: hello'

In [8]: mock.static_echo = lambda message: f"mock: {message}"
   ...:

In [9]: mock.static_echo("hello")
   ...:
Out[9]: 'mock: hello'





You can also use regular methods:

In [11]: def new(message):
    ...:     return f"new {message}"
    ...:

In [12]: mock.instance_echo = new

In [13]: mock.instance_echo("Hi")
Out[13]: 'new Hi'





Or even methods from any instances:

In [14]: class MockEcho:
    ...:     def echo(self, message):
    ...:         return f"MockEcho {message}"
    ...:

In [15]: mock.class_echo = MockEcho().echo

In [16]: mock.class_echo("Wow!")
Out[16]: 'MockEcho Wow!'







Setting Magic Methods

Magic Methods must be defined at the instance’s class and not the instance. StrictMock has special mechanics that allow you to set them per instance trivially:

In [1]: from testslide import StrictMock

In [2]: mock = StrictMock()

In [3]: mock.__str__ = lambda: 'mocked str'

In [4]: str(mock)
Out[4]: 'mocked str'







Runtime Attributes

StrictMock introspects the template’s __init__ code using some heuristics to find attributes that are dynamically set during runtime. If this mechanism fails to detect a legit attribute, you should inform StrictMock about them:

StrictMock(template=TemplateClass, runtime_attrs=['attr_set_at_runtime'])







Default Context Manager

If the template class is a context manager, default_context_manager can be used to automatically setup __enter__ and __exit__ mocks for you:

In [1]: from testslide import StrictMock

In [2]: class CM:
   ...:   def __enter__(self):
   ...:     return self
   ...:
   ...:   def __exit__(self, exc_type, exc_value, traceback):
   ...:     pass
   ...:

In [3]: mock = StrictMock(template=CM, default_context_manager=True)

In [4]: with mock as m:
   ...:   assert id(mock) == id(m)
   ...:





The mock itself is yielded.


Note

This also works for asynchronous context managers [https://docs.python.org/3/reference/datamodel.html#asynchronous-context-managers].





Signature Validation

By default, StrictMock will validate arguments passed to callable attributes and the return value when called. This is done by inserting a proxy object in between the attribute and the value. In some rare situations, this proxy object can cause issues (eg if you assert type(self.attr) == Foo). If having type() return the correct value is more important than having API validation, you can disable them:

In [1]: from testslide import StrictMock

In [2]: class CallableObject:
   ...:   def __call__(self):
   ...:     pass
   ...:

In [3]: s = StrictMock()

In [4]: s.attr = CallableObject()

In [5]: type(s.attr)
Out[5]: testslide.strict_mock._MethodProxy

In [6]: s = StrictMock(type_validation=False)

In [7]: s.attr = CallableObject()

In [8]: type(s.attr)
Out[8]: __main__.CallableObject







Type Validation

By default, StrictMock will validate types of set attributes, method call arguments and method return values, against available type hinting information.

If this type validation yields bad results (likely a bug, please report it), you can disable it with:

StrictMock(template=SomeClass, type_validation=False)





If you don’t want to disable type validation for the entire StrictMock, just for specific attributes, pass attributes_to_skip_type_validation to the constructor of StrictMock

In [1]: from testslide import StrictMock

In [2]: class ObjectWithAttr():
  ...:     a:str=""
  ...:

In [3]: s = StrictMock(ObjectWithAttr, attributes_to_skip_type_validation=["a"])
  ...:

In [4]: s
Out[4]: <__main__.ObjectWithAttr at 0x1076796d8>

In [5]: s.a=2

In [6]: s.a
Out[6]: 2








Misc Functionality


	copy.copy() and copy.deepcopy() works, and gives back another StrictMock, with the same behavior.


	Template classes that use __slots__ are supported.








            

          

      

      

    

  

    
      
          
            
  
Patching

StrictMock solves the problem of having mocks that behave like the real thing. To really accomplish that we need a way of defining what a mocked method call will return. We also need a way of putting the mock in place of real objects. These are problems solved with patching.

TestSlide provides patching tools specialized in different problems. They are not only useful to configure StrictMock, but any Python object, including “real” ones, like a database connection. You can configure canned responses for specific calls, simulate network timeouts or anything you may need for your test.

Here’s a summary of the patching tools available either via testslide.TestCase or TestSlide’s DSL. Also check the comprehensive Cheat Sheet.


	patch_attribute()
	Changes the value of an attribute. Eg:

self.patch_attribute(math, "pi", 3)
math.pi  # => 3







	mock_callable() / mock_async_callable()
	Similar to patch_attribute() but designed to work with sync/async functions/methods. It creates and patches mocks for callables, which implements call arguments constraints, different call behaviors (return value, raise exception etc) and optional call assertions. Eg:

self.mock_callable("os.path", "exists")\
  .for_call("/bin")\
  .to_return_value(False)
os.path.exists("/bin")  # => False







	mock_constructor()
	Allows classes to return mocks when new instances are created instead of real instances. It has the same fluid interface as mock_callable()/mock_async_callable(). Eg:

popen_mock = StrictMock(template=subprocess.Popen)
self.mock_constructor(subprocess, "Popen")\
  .for_call(["/bin/true"])\
  .to_return_value(popen_mock)
subprocess.Popen(["/bin/true"])  # => popen_mock










Contents:


	patch_attribute()
	Type Validation





	mock_callable()
	Defining a Target

	Defining Accepted Calls

	Defining Call Behavior

	Defining Call Assertions

	Cheat Sheet

	Magic Methods

	Type Validation

	Test Framework Integration





	mock_async_callable()
	.with_implementation()

	.with_wrapper()

	Implicit Coroutine Return

	Test Framework Integration





	mock_constructor()
	Type Validation

	Caveats

	Test Framework Integration





	Argument Matchers
	Logic Operations

	Integers

	Floats

	Strings

	Lists

	Dictionaries

	Collections

	Generic





	Cheat Sheet








            

          

      

      

    

  

    
      
          
            
  
patch_attribute()

patch_attribute() will, for the duration of the test, change the value of a given attribute:

import math

class ChangePi(TestCase):
  def test_pi(self):
    self.patch_attribute(math, "pi", 4)
    self.assertEqual(math.pi, 4)





patch_attribute() works exclusively with non-callable attributes.


Note

TestSlide provides mock_callable(), mock_async_callable() and mock_constructor() for callables and classes because those require specific functionalities.



You can use patch_attribute() with:


	Modules.


	Classes.


	Instances of classes.


	Class attributes at instances of classes.


	Properties at instances of classes.




Properties are tricky to patch because of the quirky mechanics that Python’s Descriptor Protocol [https://docs.python.org/3/howto/descriptor.html] requires. patch_attribute() has support for that so things “just work”:

class WithProperty:
  @property
  def prop(self):
    return "prop"

class PatchingProperties(TestCase):
  def test_property(self):
    with_property = WithProperty()
    self.patch_attribute(with_property, "prop", "mock")
    self.assertEqual(with_property.prop, "mock")






Type Validation

patch_attribute implements type validation and will only allow attributes to be mocked with values of types that match the available typing annotation. TypeCheckerError will be raised if a bad type is given. This check is expected to work 100% of times, but if it does not (possibly a bug in TestSlide, please report!), you can disable it by doing patch_attribute(obj, "attr", "newval", type_validation=False).





            

          

      

      

    

  

    
      
          
            
  
mock_callable()

patch_attribute() deals with non-callable attributes. mock_callable() specializes on patching and mocking functions and instance/static/class methods. In a single shot, it allows you to:


	Create a callable mock.


	Define what call to accept.


	Define call behavior.


	Patch the callable mock somewhere.


	Define a call assertion (optional).




Sounds complicated, but it is not:

import os
from testslide import TestCase

def rm(path):
  os.remove(path)

class TestRm(TestCase):
  def test_remove_from_filesystem(self):
    path = '/some/file'
    self.mock_callable(os, 'remove')\
      .for_call(path)\
      .to_return_value(None)\
      .and_assert_called_once()
    rm(path)





This test will only pass if os.remove was called once with path. It will fail if os.remove:


	Is not called.


	Is called more than once.


	Is called with any other argument.




For example, if the code is broken and does os.remove('/wrong/file'):

$ testslide rm_test.py
rm_test.TestRm
  test_remove_from_filesystem: AggregatedExceptions: 2 failures.

Failures:

  1) rm_test.TestRm: test_remove_from_filesystem
    1) UnexpectedCallArguments: <module 'os' from '/opt/python/lib/python3.6/os.py'>, 'remove':
      Received call:
        ('/wrong/file',)
        {}
      But no behavior was defined for it.
      These are the registered calls:
        ('/some/file',)
        {}

      File "rm_test.py", line 14, in test_remove_from_filesystem
        rm(path)
      File "rm_test.py", line 5, in rm
        os.remove('/wrong/file')
      File "/opt/python/lib/python3.6/unittest/mock.py", line 939, in __call__
        return _mock_self._mock_call(*args, **kwargs)
      File "/opt/python/lib/python3.6/unittest/mock.py", line 1005, in _mock_call
        ret_val = effect(*args, **kwargs)
    2) AssertionError: calls did not match assertion.
    <module 'os' from '/opt/python/lib/python3.6/os.py'>, 'remove':
      expected: called at least 1 time(s) with arguments:
        ('/some/file',)
        {}
      received: 0 call(s)
      File "/opt/python/lib/python3.6/unittest/case.py", line 59, in testPartExecutor
        yield
      File "/opt/python/lib/python3.6/unittest/case.py", line 646, in doCleanups
        function(*args, **kwargs)

Finished 1 example(s) in 0.0s
  Failed: 1





Note how you get two failed assertions, instead of just one:


	The mock was called with something unexpected.


	The expected call did not happen.




It is now pretty clear what is broken, and why it is broken.


Defining a Target

You always start mock_callable with:

self.mock_callable(target, 'attribute_name')





target can be:


	A StrictMock.


	A module.


	The module can be given as a reference (eg: time) or as a string (eg: "time"). The latter allows you to avoid importing the module at the same file you use mock_callable.






	A Class


	Any object.




attribute_name is the name of the function / method you want to mock.


Note

You can mock instance methods at instances of classes but not at the class. This is by design, as mocking instance methods at the class affects every instance of that class, not just what’s needed for the test, making it easy to introduce bugs. Assertions can be ambiguous: .and_assert_called_twice() means one instance called twice, or two instances called once each?





Defining Accepted Calls

By default, mock_callable accepts all call arguments:

self.mock_callable(os, 'remove')\
  .to_return_value(None)
for n in range(3):
  os.remove(str(n)) # => None





You can define precisely what arguments to accept:

self.mock_callable(os, 'remove')\
  .for_call('/some/file')\
  .to_return_value(None)
os.remove('/some/file') # => None
os.remove('/some/other/file') # => raises UnexpectedCallArguments





Note how it is safe by default: once for_call is used, other calls will not be accepted.


Note

Also check Argument Matchers: they allow more relaxed argument matching like “any string matching this regexp” or “any positive number”.



For usecases where certain arguments could take many values, and setting up all the for_calls could become tedious you can use for_partial_call
This causes Testslide to ignore all validations of args and kwargs passed to the mock, except those that are defined in the  for_partial_call

Tests will still fail, if none of the necessary args or kwargs are passed, so this is a sane golden pathway, between writing safe and easy to use mocks.
Example:

def test_for_partial_call_accepts_all_other_args_and_kwargs(self):
    self.mock_callable(sample_module, "test_function",).for_partial_call(
        "firstarg", kwarg1="a"
    ).to_return_value(["blah"])
    sample_module.test_function("firstarg", "xx", kwarg1="a", kwarg2="x")

def test_for_partial_call_fails_if_no_required_args_are_present(self):
    with self.assertRaises(mock_callable.UnexpectedCallArguments):
        self.mock_callable(sample_module, "test_function",).for_partial_call(
            "firstarg", kwarg1="a"
        ).to_return_value(["blah"])
        sample_module.test_function(
            "differentarg", "alsodifferent", kwarg1="a", kwarg2="x"
        )

def test_for_partial_call_fails_if_no_required_kwargs_are_present(self):
    with self.assertRaises(mock_callable.UnexpectedCallArguments):
        self.mock_callable(sample_module, "test_function",).for_partial_call(
            "firstarg", kwarg1="x"
        ).to_return_value(["blah"])
        sample_module.test_function("firstarg", "secondarg", kwarg1="a", kwarg2="x")






Composition

You can use mock_callable for the same target as many times as needed, so you can compose the behavior you need:

self.mock_callable(os, 'remove')\
  .to_raise(FileNotFoundError)
self.mock_callable(os, 'remove')\
  .for_call('/some/file')\
  .to_return_value(None)
self.mock_callable(os, 'remove')\
  .for_call('/some/other/file')\
  .to_return_value(None)
os.remove('/some/file') # => None
os.remove('/some/other/file') # => None
os.remove('/anything/else') # => raises FileNotFoundError





mock_callable scans the list of registered calls from last to first, until it finds a match (UnexpectedCallArguments is raised if there’s no match). In this example, FileNotFoundError essentially became the default behavior. This is particularly powerful when you configure it at the setUp() phase of your tests, then specialize the behavior inside each test function, for specific arguments.




Defining Call Behavior

The safe by default rational spans to call behavior. There’s no default, and you are required to define what happens when the call is made.


Returning a value

Always return the same value:

self.mock_callable(os, 'remove')\
  .for_call('/some/file')\
  .to_return_value(None)







Returning a series of values

Return each value from a list until exhausted:

self.mock_callable(time, 'time')\
  .to_return_values([1.0, 2.0, 3.0])
time.time() => 1.0
time.time() => 2.0
time.time() => 3.0
time.time() => raises UndefinedBehaviorForCall







Yielding values

You can return a generator with:

self.mock_callable(some_object, 'some_method_name')\
  .to_yield_values([1, 2, 3])
for each_value in some_object.some_method_name():
  print(each_value)  # => 1, 2, 3







Raising exceptions

You can raise exceptions by either giving an exception class itself or an instance of it:

self.mock_callable(some_object, 'some_method_name')\
  .to_raise(RuntimeError)
some_object.some_method_name()  # => raise RuntimeError







Replacing the original implementation

Replace the original implementation with something else:

def func():
  return 33

self.mock_callable(some_object, 'some_method_name')\
  .with_implementation(func)
some_object.some_method_name()  # => 33






Note

func can be any callable (eg: a lambda).





Wrapping the original implementation

When the target is a real object (not a mock), it can be useful to still call the original method, process its return perhaps, and return something else:

def trim_query(original_callable):
  return original_callable()[0:5]

self.mock_callable(some_service, 'big_query')\
  .with_wrapper(trim_query)
some_service.big_query()  # => returns trimmed list







Calling the original implementation

Sometimes it is useful to mock only cherry picked calls for real targets and allow all other calls through:

self.mock_callable(some_object, 'some_method')\
  .to_call_original()
self.mock_callable(some_object, 'some_method')\
  .for_call('specific call')\
  .to_return_value('specific response')
some_object.some_method('any call')  # => returns whatever some_object.some_method() returns
some_object.some_method('specific call')  # => 'specific response'





You can achieve the opposite (specific call goes through, mocked general case) with:

self.mock_callable(some_object, 'some_method_name')\
  .to_return_value('general case')
self.mock_callable(some_object, 'some_method_name')\
  .for_call('specific case')\
  .to_call_original()
some_object.some_method_name('whatever')  # => 'general case'
some_object.some_method_name('specific case')  # => Calls the original callable, and return the value








Defining Call Assertions

When dealing with external dependencies, it is useful to assert on calls to them when they have side-effects. mock_callable() allows the easy assertion on such calls, as many times as needed within the same test.


Number of Calls

This will assert that the call was made exactly one time:

self.mock_callable(os, 'remove')\
  .for_call(path)\
  .to_return_value(None)\
  .and_assert_called_once()





Alternatively you may define an arbitrary exact number of calls, minimum, maximum or that no call should happen:

.and_assert_called_exactly(times)
.and_assert_called_once()
.and_assert_called_twice()
.and_assert_called_at_least(times)
.and_assert_called_at_most(times)
.and_assert_called()
.and_assert_not_called()







Call Order

Frequently the order in which calls happen does not matter, but there are cases where this is desirable.

For example, let’s say we want to ensure that some asset is first deleted from a storage index and then removed from the backend, thus avoiding the window of it being indexed, but unavailable at the backend. Here’s how to do it:

self.mock_callable(storage_index, "delete")\
  .for_call(asset_id)\
  .and_assert_called_ordered()
self.mock_callable(storage_backend, "delete")\
  .for_call(asset_id)\
  .and_assert_called_ordered()





For this test to pass, these calls must happen exactly in this order:

storage_index.delete(asset_id)
storage_backend.delete(asset_id)





The test will fail if these calls are made in a different order or if they don’t happen at all.




Cheat Sheet

It is a good idea to keep this at hand when using mock_callable:

self.mock_callable(target, 'callable_name')\
  # Call to accept
  .for_call(*args, **kwargs)\
  # Behavior
  .to_return_value(value)\
  .to_return_values(values_list)\
  .to_yield_values(values_list)\
  .to_raise(exception)\
  .with_implementation(func)\
  .with_wrapper(func)\
  .to_call_original()\
  # Assertion (optional)
  .and_assert_called_exactly(times)
  .and_assert_called_once()
  .and_assert_called_twice()
  .and_assert_called_at_least(times)
  .and_assert_called_at_most(times)
  .and_assert_called()
  .and_assert_called_ordered()
  .and_assert_not_called()







Magic Methods

Mocking magic methods (eg: __str__) for an instance can be quite tricky, as str(obj) requires the mock to be made at type(obj). mock_callable implements the complicated mechanics required to make it work, so you can easily mock directly at instances:

import time
from testslide import TestCase

class A:
  def __str__(self):
    return 'original'

class TestMagicMethodMocking(TestCase):
  def test_str(self):
    a = A()
    other_a = A()
    self.assertEqual(str(a), 'original')
    self.mock_callable(a, '__str__')\
      .to_return_value('mocked')
    self.assertEqual(str(a), 'mocked')
    self.assertEqual(str(other_a), 'original')





The mock works for the target instance, but does not affect other instances.



Type Validation

If typing annotation information is available, mock_callable() validates types of objects passing through the mock. If an invalid type is detected, it will raise testslide.lib.TypeCheckError.

This feature is enabled by default. If you need to disable it (potentially due to a bug, please report!), you can do so by mock_callable(target, name, type_validation=False).


Call Argument Types

import testslide, testslide.lib

class SomeClass:
    def some_method(self, message: str):
        return "world"

class TestArgumentTypeValidation(testslide.TestCase):
    def test_argument_type_validation(self):
        some_class_instance = SomeClass()
        self.mock_callable(some_class_instance, "some_method").to_return_value(
            "mocked world"
        )
        self.assertEqual(some_class_instance.some_method("hello"), "mocked world")
        with self.assertRaises(testslide.lib.TypeCheckError):
            # TypeCheckError: Call with incompatible argument types:
            # 'message': type of message must be str; got int instead
            some_class_instance.some_method(1)





This is particularly helpful when changes are introduced to the code: if a mocked method changes the signature, even when mocked, mock_callable will give you the signal that there’s something broken.



Return Value Type

import testslide, testslide.lib

class SomeClass:
    def one(self) -> int:
        return 1

class TestReturnTypeValidation(testslide.TestCase):
    def test_return_type_validation(self):
        some_class_instance = SomeClass()
        self.mock_callable(some_class_instance, "one").to_return_value(
            "one"
        )
        with self.assertRaises(testslide.lib.TypeCheckError):
            # TypeCheckError: type of return must be int; got str instead
            some_class_instance.one()







Limitations

Currently TypeVar annotations are not being checked for.




Test Framework Integration


TestSlide’s DSL

Integration comes out of the box for TestSlide’s DSL: you can simply do self.mock_callable() from inside examples or hooks.



Python Unittest

testslide.TestCase is provided with off the shelf integration ready:


	Inherit your unittest.TestCase from it.


	If you overload unittest.TestCase.setUp, make sure to call super().setUp() before using mock_callable().






Any Test Framework

You must follow these steps for each test executed that uses mock_callable():


	mock_callable calls testslide.mock_callable.register_assertion passing a callable object whenever an assertion is defined. You must set it to a function that will execute the assertion after the test code finishes. Eg: for Python’s unittest: testslide.mock_callable.register_assertion = lambda assertion: self.addCleanup(assertion).


	After each test execution, you must unconditionally call testslide.mock_callable.unpatch_all_callable_mocks. This will undo all patches, so the next test is not affected by them. Eg: for Python’s unittest: self.addCleanup(testslide.mock_callable.unpatch_all_callable_mocks).


	You can then call testslide.mock_callable.mock_callable directly from your tests.









            

          

      

      

    

  

    
      
          
            
  
mock_async_callable()

Just like mock_callable() works with regular callables, mock_async_callable() works with coroutine functions [https://docs.python.org/3/glossary.html#term-coroutine-function]. It implements virtually the same interface (including with all its goodies), with only the following minor differences.


.with_implementation()

It requires an async function:

async def async_func():
  return 33

self.mock_async_callable(some_object, 'some_method_name')\
  .with_implementation(async_func)
await some_object.some_method_name()  # => 33







.with_wrapper()

It requires an async function:

async def async_trim_query(original_async_callable):
  return await original_async_callable()[0:5]

self.mock_async_callable(some_service, 'big_query')\
  .with_wrapper(async_trim_query)
await some_service.big_query()  # => returns trimmed list







Implicit Coroutine Return

mock_async_callable() checks if what it is mocking is a coroutine function and refuses to mock if it is not. This is usually a good thing, as it prevents mistakes. In some cases, such as the ones related to this cython issue [https://github.com/cython/cython/issues/2273], this check can fail.

If you are trying to mock some callable with it, that is not a coroutine function, but you are sure that it returns a coroutine when called, you can still mock it like this:

self.mock_async_callable(
  target,
  "sync_callable_that_returns_a_coroutine",
  callable_returns_coroutine=True,
)







Test Framework Integration

Follows the exact same model as mock_callable(), but it should be invoked as testslide.mock_callable.mock_async_callable.





            

          

      

      

    

  

    
      
          
            
  
mock_constructor()

Let’s say we want to unit test the Backup.delete method:

import storage

class Backup:
  def __init__(self):
    self.storage = storage.Client(timeout=60)

  def delete(self, path):
    self.storage.delete(path)





We want to ensure that when Backup.delete is called, it actually deletes path from the storage as well, by calling storage.Client.delete. We can leverage StrictMock and mock_callable() for that:

self.storage_mock = StrictMock(storage.Client)
self.mock_callable(self.storage_mock, 'delete')\
  .for_call('/file/to/delete')\
  .to_return_value(True)\
  .and_assert_called_once()
Backup().delete('/file/to/delete')





The question now is: how to put self.storage_mock inside Backup.__init__? This is where mock_constructor jumps in:

from testslide import TestCase, StrictMock, mock_callable
import storage
from backup import Backup

class TestBackupDelete(TestCase):
  def setUp(self):
    super().setUp()
    self.storage_mock = StrictMock(storage.Client)
    self.mock_constructor(storage, 'Client')\
      .for_call(timeout=60)\
      .to_return_value(self.storage_mock)

  def test_delete_from_storage(self):
    self.mock_callable(self.storage_mock, 'delete')\
      .for_call('/file/to/delete')\
      .to_return_value(True)\
      .and_assert_called_once()
    Backup().delete('/file/to/delete')





mock_constructor() makes storage.Client(timeout=60) return self.storage_mock. It is similar to mock_callable(), accepting the same call, behavior and assertion definitions. Similarly, it will also fail if storage.Client() (missing timeout) is called.

Note how by using mock_constructor(), not only you get all safe by default goodies, but also totally decouples your test from the code. This means that, no matter how Backup is refactored, the test remains the same.


Note

Also check Argument Matchers: they allow more relaxed argument matching like “any string matching this regexp” or “any positive number”.




Type Validation

mock_constructor() uses type annotation information from constructors to validate that mocks are respecting the interface:

import sys
import testslide, testslide.lib

class Messenger:
    def __init__(self, message: str):
      self.message = message

class TestArgumentTypeValidation(testslide.TestCase):
    def test_argument_type_validation(self):
        messenger_mock = testslide.StrictMock(template=Messenger)
        self.mock_constructor(sys.modules[__name__], "Messenger").to_return_value(messenger_mock)
        with self.assertRaises(testslide.lib.TypeCheckError):
            # TypeCheckError: Call with incompatible argument types:
            # 'message': type of message must be str; got int instead
            Messenger(message=1)





If you need to disable it (potentially due to a bug, please report!) you can do so with: mock_constructor(module, class_name, type_validation=False).



Caveats

Because of the way mock_constructor() must be implemented (see next section), its usage must respect these rules:


	References to the mocked class saved prior to mock_constructor() invocation can not be used, including previously created instances.


	Access to the class must happen exclusively via attribute access (eg: getattr(some_module, "SomeClass")).




A simple easy way to ensure this is to always:

# Do this:
import some_module
some_module.SomeClass
# Never do:
from some_module import SomeClass






Note

Not respecting these rules will break mock_constructor() and can lead to unpredicted behavior!




Implementation Details

mock_callable() should be all you need:

self.mock_callable(SomeClass, '__new__')\
  .for_call()\
  .to_return_value(some_class_mock)





However, as of July 2019, Python 3 has an open bug https://bugs.python.org/issue25731 that prevents __new__ from being patched. mock_constructor() is a way around this bug.

Because __new__ can not be patched, we need to handle things elsewhere. The trick is to dynamically create a subclass of the target class, make the changes to __new__ there (so we don’t touch __new__ at the target class), and patch it at the module in place of the original class.

This works when __new__ simply returns a mocked value, but creates issues when used with .with_wrapper() or .to_call_original() as both requires calling the original __new__. This will return an instance of the original class, but the new subclass is already patched at the module, thus super() / super(Class, self) breaks. If we make them call __new__ from the subclass, the call comes from… __new__ and we get an infinite loop. Also, __new__ calls __init__ unconditionally, not allowing .with_wrapper() to mangle with the arguments.

The way around this, is to keep the original class where it is and move all its attributes to the child class:


	Dynamically create the subclass of the target class, with the same name.


	Move all __dict__ values from the target class to the subclass (with a few exceptions, such as __new__ and __module__).


	At the subclass, add a __new__ that works as a factory, that allows mock_callable() interface to work.


	Do some trickery to fix the arguments passed to __init__ to allow .with_wrapper() mangle with them.


	Patch the subclass in place of the original target class at its module.


	Undo all of this when the test finishes.




This essentially creates a “copy” of the class, at the subclass, but with __new__ implementing the behavior required. All things such as class attributes/methods and isinstance() are not affected. The only noticeable difference, is that mro() will show the extra subclass.




Test Framework Integration


TestSlide’s DSL

Integration comes out of the box for TestSlide’s DSL: you can simply do self.mock_constructor() from inside examples or hooks.



Python Unittest

testslide.TestCase is provided with off the shelf integration ready:


	Inherit your unittest.TestCase from it.


	If you overload unittest.TestCase.setUp, make sure to call super().setUp() before using mock_constructor().






Any Test Framework

You must follow these steps for each test executed that uses mock_constructor():


	Integrate mock_callable() (used by mock_constructor under the hood).


	After each test execution, you must unconditionally call testslide.mock_constructor.unpatch_all_callable_mocks. This will undo all patches, so the next test is not affected by them. Eg: for Python’s unittest: self.addCleanup(testslide.mock_constructor.unpatch_all_callable_mocks).


	You can then call testslide.mock_constructor.mock_constructor directly from your tests.









            

          

      

      

    

  

    
      
          
            
  
Argument Matchers

mock_callable(), mock_async_callable() and mock_constructor() allow the definitions of what call arguments to accept by using .for_call(). Eg:

self.mock_constructor(storage, 'Client')\
  for_call(timeout=60)\
  to_return_value(self.storage_mock)





This validation is strict: tests will work with Client(timeout=60) but fail with Client(timeout=61). Perhaps letting tests pass with “any positive integer” would be enough. This is precisely what argument matchers allow us to do:

from testslide.matchers import IntGreaterThan
(...)
self.mock_constructor(storage, 'Client')\
  for_call(timeout=IntGreaterThan(0))\
  to_return_value(self.storage_mock)





This matches for  Client(timeout=5), Client(timeout=60) but not for Client(timeout=0) or Client(timeout=-1).


Logic Operations

Argument matchers can be combined using bitwise operators:

# String containing "this" AND ending with "that"
StrContaining("this") & StrEndingWith("that")
# String containing "this" OR ending with "that"
StrContaining("this") | StrEndingWith("that")
# String containing "this" EXCLUSIVE OR ending with "that"
StrContaining("this") ^ StrEndingWith("that")
# String NOT containing "this"
~StrContaining("this")







Integers







	Matcher

	Description





	AnyInt()

	Any int



	NotThisInt(value)

	Any integer but the given value



	IntBetween(min_value, max_valu)

	Integer >= min_value and <= max_value



	IntGreaterThan(value)

	Integer > value



	IntGreaterOrEquals(value)

	Integer >= value



	IntLessThan(value)

	Integer < value



	IntLessOrEquals(value)

	Integer <= value








Floats







	Matcher

	Description





	AnyFloat()

	Any float



	NotThisFloat(value)

	Any float but the given value



	FloatBetween(min_value, max_valu)

	Float >= min_value and <= max_value



	FloatGreaterThan(value)

	Float > value



	FloatGreaterOrEquals(value)

	Float >= value



	FloatLessThan(value)

	Float < value



	FloatLessOrEquals(value)

	Float <= value








Strings







	Matcher

	Description





	AnyStr()

	Any str



	RegexMatches(pattern, flags=0)

	Any string that matches the regular expression compiled by re.compile(pattern, flags)



	StrContaining(text)

	A string which contains text in it



	StrStartingWith()

	A string that starts with text



	StrEndingWith(text)

	A string that ends with text








Lists







	Matcher

	Description





	AnyList()

	Any list



	ListContaining(element)

	Any list containing element



	ListContainingAll(element_list)

	Any list which contains every element of element_list



	NotEmptyList()

	A list which has at least one element



	EmptyList()

	An empty list: []








Dictionaries







	Matcher

	Description





	AnyDict()

	Any dict



	NotEmptyDict()

	A dictionary with any at least one key



	EmptyDict()

	An empty dictionary: {}



	DictContainingKeys(keys_list)

	A dictionary containing all keys from keys_list



	DictSupersetOf(this_dict)

	A dictionary containing all key / value pairs from this_dict








Collections







	Matcher

	Description





	AnyContaining(element)

	A container that contains element



	AnyContainingAll(element_list)

	A container that contains every element of element_list



	AnyIterable()

	Any iterable



	IterableWithElements(element_list)

	An iterable containing all the elements in element_list in the same order



	AnyNotEmpty()

	An object where len() does not evaluate to zero



	AnyEmpty()

	An object where len() evaluates to zero








Generic







	Matcher

	Description





	Any()

	Any object



	AnyTruthy()

	Any object where bool(obj) == True



	AnyFalsey()

	Any object where bool(obj) == False



	AnyInstanceOf()

	Any object where isinstance(obj) == True



	AnyWithCall(call)

	Any object where call(obj) == True






self.mock_callable(os, 'remove')\
  .for_call(AnyWithCall(lambda path: path.endswith("py"))\
  .to_return_value(None)\
  .and_assert_called_once()









            

          

      

      

    

  

    
      
          
            
  
Cheat Sheet

Here is a comprehensive list of use cases for all patching tools TestSlide offers and when to use each of them.

# module.py

# self.patch_attribute(module, "MODULE_ATTRIBUTE", "mock")
# module.MODULE_ATTRIBUTE  # => "mock"
MODULE_ATTRIBUTE = "..."

# self.mock_callable(module, "function_at_module")\
#  .for_call()\
#  .to_return_value(None)
# module.function_at_module()  # => "mock"
def function_at_module():
  pass

# self.mock_callable(module, "async_function_at_module")\
#  .for_call()\
#  .to_return_value("mock")
# await module.async_function_at_module()  # => "mock"
async def async_function_at_module():
  pass

# some_class_mock = testslide.StrictMock(template=module.SomeClass)
class SomeClass:
  # Patching here affects all instances of the class as well
  # self.patch_attribute(SomeClass, "CLASS_ATTRIBUTE", "mock")
  # module.SomeClass.CLASS_ATTRIBUTE  # => "mock"
  CLASS_ATTRIBUTE = "..."

  # self.mock_constructor(module, "SomeClass")\
  #   .for_call()\
  #   .to_return_value(some_class_mock)
  # module.SomeClass()  # => some_class_mock
  def __init__(self):
    # Must be patched at instances
    self.init_attribute = "..."

  # Must be patched at instances
  @property
  def property(self):
    return "..."

  # Must be patched at instances
  def instance_method(self):
    pass

  # Must be patched at instances
  async def ainstance_method(self):
    pass

  # self.mock_callable(SomeClass, "class_method")\
  #  .for_call()\
  #  .to_return_value("mock")
  # module.SomeClass.class_method()  # => "mock"
  @classmethod
  def class_method(cls):
    pass

  # self.mock_async_callable(SomeClass, "async_class_method")\
  #  .for_call()\
  #  .to_return_value("mock")
  # await module.SomeClass.async_class_method()  # => "mock"
  @classmethod
  async def async_class_method(cls):
    pass

  # self.mock_callable(SomeClass, "static_method")\
  #  .for_call()
  #  .to_return_value("mock")
  # module.SomeClass.static_method()  # => "mock"
  @staticmethod
  def static_method(cls):
    pass

  # self.mock_async_callable(SomeClass, "async_static_method")\
  #  .for_call()
  #  .to_return_value("mock")
  # await module.SomeClass.async_static_method()  # => "mock"
  @staticmethod
  async def async_static_method(cls):
    pass

  # Must be patched at instances
  def __str__(self):
    return "SomeClass"

some_class_instance = SomeClass()

# self.patch_attribute(some_class_instance, "init_attribute", "mock")
some_class_instance.init_attribute  # => "mock"

# Patching at the instance does not affect other instances or the class
# self.patch_attribute(some_class_instance, "CLASS_ATTRIBUTE", "mock")
some_class_instance.CLASS_ATTRIBUTE  # => "mock"

# self.patch_attribute(some_class_instance, "property", "mock")
some_class_instance.property  # => "mock"

# self.mock_callable(some_class_instance, "instance_method")\
#  .for_call()\
#  .to_return_value("mock")
some_class_instance.instance_method()  # => "mock"

# self.mock_async_callable(some_class_instance, "async_instance_method")\
#  .for_call()\
#  .to_return_value("mock")
some_class_instance.async_instance_method()  # => "mock"

# self.mock_callable(some_class_instance, "class_method")\
#   .for_call()\
#   .to_return_value("mock")
some_class_instance.class_method()  # => "mock"

# self.mock_async_callable(some_class_instance, "async_class_method")
#   .for_call()\
#   .to_return_value("mock")
some_class_instance.async_class_method()  # => "mock"

# self.mock_callable(some_class_instance, "static_method")\
#  .for_call()\
#  .to_return_value("mock")
some_class_instance.static_method()  # => "mock"

# self.mock_async_callable(some_class_instance, "async_static_method")\
#  .for_call()\
#  .to_return_value("mock")
some_class_instance.async_static_method()  # => "mock"

# self.mock_callable(some_class_instance, "__str__")\
#   .for_call()\
#   .to_return_value("mock")
str(some_class_instance)  # => "mock"








            

          

      

      

    

  

    
      
          
            
  
TestSlide’s DSL

When testing complex scenarios with lots of variations, or when doing BDD [https://en.wikipedia.org/wiki/Behavior-driven_development], TestSlide’s DSL helps you break down your test cases close to spoken language. Composition of test scenarios enables covering more ground with less effort. Think of it as unittest.TestCase on steroids.

Let’s say we want to test this class:

import storage

class Backup:
  def __init__(self):
    self.storage = storage.Client(timeout=60)

  def delete(self, path):
    self.storage.delete(path)





We can test it with:

from testslide.dsl import context
from testslide import StrictMock
import storage
import backup

@context
def Backup(context):

  context.memoize("backup", lambda self: backup.Backup())

  context.memoize("storage_mock", lambda self: StrictMock(storage.Client))

  @context.before
  def mock_storage_Client(self):
    self.mock_constructor(storage, 'Client')\
      .for_call(timeout=60)\
      .to_return_value(self.storage_mock)

  @context.sub_context
  def delete(context):
    context.memoize("path", lambda self: '/some/file')

    @context.after
    def call_backup_delete(self):
      self.backup.delete(self.path)

    @context.example
    def it_deletes_from_storage_backend(self):
      self.mock_callable(self.storage_mock, 'delete')\
        .for_call(self.path)\
        .to_return_value(True)\
        .and_assert_called_once()





And when we run it:

$ testslide backup_test.py
Backup
  delete
    it deletes from storage backend

Finished 1 example(s) in 0.0s:
  Successful: 1





As you can see, we can declare contexts for testing, and keep building on top of them:


	The top Backup context contains the object we want to test, and the common mocks needed.


	The nested delete context always calls Backup.delete after each example.


	The it_deletes_from_storage_backend example defines only the assertion needed for it.




As the Backup class grows, it is easy to nest new contexts, and reuse what’s already defined.


Contents:


	Contexts and Examples
	Sub Examples

	Explicit names





	Sharing Contexts
	Merging

	Nesting

	Parameterized shared contexts





	Context Hooks
	Before

	After

	Around





	Context Attributes and Functions
	Attributes

	Functions





	Skip and Focus
	Focus

	Skip





	unittest.TestCase Integration
	Assertions

	Reusing existing unittest.TestCase setUp





	Async Support
	Event Loop Health












            

          

      

      

    

  

    
      
          
            
  
Contexts and Examples

Within TestSlide’s DSL language, a single test is called an example. All examples are declared inside a context. Contexts can be arbitrarily nested.

Contexts hold code that sets up and tear down the environment for each particular scenario. Things like instantiating objects and setting up mocks are usually part of the context.

Examples hold only code required to test the particular case.

Let’s see it in action:

from testslide.dsl import context

@context
def calculator(context):

    @context.sub_context
    def addition(context):

        @context.example
        def sums_given_numbers(self):
            pass

    @context.sub_context
    def subtract(context):

        @context.example
        def subtracts_given_numbers(self):
            pass





This describes the basic behavior of a calculator class. Here’s what you get when you run it:

calculator
  addition
    sums given numbers: PASS
  subtraction
    subtracts given numbers: PASS

Finished 2 examples in 0.0s
  Successful: 2





Note how TestSlide parses the Python code, and yields a close to spoken language version of it.


Sub Examples

Sometimes, within the same example, you want to exercise your code multiple times for the same data. Sub examples allow you to do just that:

from testslide.dsl import context

@context
def Sub_examples(context):

  @context.example
  def shows_individual_failures(self):
    for i in range(5):
      with self.sub_example():
        if i %2:
          raise AssertionError('{} failed'.format(i))
    raise RuntimeError('Last Failure')





When executed, TestSlide understands all cases, and report them properly:

Sub examples
  shows individual failures: AggregatedExceptions: 3 failures.

Failures:

  1) Sub examples: shows individual failures
    1) RuntimeError: Last Failure
      File "sub_examples_test.py", line 12, in shows_individual_failures
        raise RuntimeError('Last Failure')
    2) AssertionError: 1 failed
      File "sub_examples_test.py", line 11, in shows_individual_failures
        raise AssertionError('{} failed'.format(i))
    3) AssertionError: 3 failed
      File "sub_examples_test.py", line 11, in shows_individual_failures
        raise AssertionError('{} failed'.format(i))

Finished 1 example(s) in 0.0s
  Failed: 1







Explicit names

TestSlide extracts the name for contexts and examples from the function name, just swapping _ for a space. If you need special characters at your context or example names, you can do it like this:

from testslide.dsl import context

@context('Top-level context name')
def top(context):
  @context.sub_context('sub-context name')
  def sub(context):
    @context.example('example with weird-looking name')
    def ex(self):
      pass






Note

When explicitly naming, the function name is irrelevant, just make sure there’s no name collision.







            

          

      

      

    

  

    
      
          
            
  
Sharing Contexts

Shared contexts allows sharing of common logic across different contexts. When you declare a shared context, its contents won’t be evaluated, unless you either merge or nest it elsewhere. Let’s see it in action.


Merging

When you merge a shared context, its hooks and examples will be added to the existing context, alongside existing hooks and examples:

from testslide.dsl import context

@context
def Nesting_Shared_Contexts(context):

    @context.shared_context
    def some_shared_things(context):

        @context.before
        def do_common_thing_before(self):
            pass

        @context.example
        def common_example(self):
            pass

    @context.sub_context
    def when_one_thing(context):
        context.merge_context('some shared things')

        @context.before
        def do_one_thing_before(self):
            pass

        @context.example
        def one_thing_example(self):
            pass

    @context.sub_context
    def when_another_thing(context):
        context.merge_context('some shared things')

        @context.before
        def do_another_thing_before(self):
            pass

        @context.example
        def another_thing_example(self):
            pass





Will result in:

Nesting Shared Contexts
  when one thing
    common example
    one thing example
  when another thing
    common example
    another thing example

Finished 4 example(s) in 0.0s
  Successful: 4







Nesting

If you nest a shared context, another sub-context will be created, with the same name as the shared context, containing all the hooks and examples from the shared context:

from testslide.dsl import context

@context
def Nesting_Shared_Contexts(context):

    @context.shared_context
    def some_shared_things(context):

        @context.before
        def do_common_thing_before(self):
            pass

        @context.example
        def common_example(self):
            pass

    @context.sub_context
    def when_one_thing(context):
        context.nest_context('some shared things')

        @context.before
        def do_one_thing_before(self):
            pass

        @context.example
        def one_thing_example(self):
            pass

    @context.sub_context
    def when_another_thing(context):
        context.nest_context('some shared things')

        @context.before
        def do_another_thing_before(self):
            pass

        @context.example
        def another_thing_example(self):
            pass





Will result in:

Nesting Shared Contexts
  when one thing
    one thing example
    some shared things
      common example
  when another thing
    another thing example
    some shared things
      common example

Finished 4 example(s) in 0.0s
  Successful: 4







Parameterized shared contexts

Your shared contexts can accept optional arguments, that can be used to control its declarations:

from testslide.dsl import context

@context
def Sharing_contexts(context):

    # This context will not be evaluated immediately, and can be reused later
    @context.shared_context
    def Shared_context(context, extra_example=False):

        @context.example
        def shared_example(self):
            pass

        if extra_example:

            @context.example
            def extra_shared_example(self):
                pass

    @context.sub_context
    def With_extra_example(context):
        context.merge_context('Shared context', extra_example=True)

    @context.sub_context
    def Without_extra_example(context):
        context.nest_context('Shared context')






Note

It is an anti-pattern to reference shared context arguments inside hooks or examples, as there’s chance of leaking context from one example to the next.







            

          

      

      

    

  

    
      
          
            
  
Context Hooks

Contexts must prepare the test scenario according to its description. To do that, you can configure hooks to run before, after or around individual examples.


Before

Before hooks are executed in the order defined, before each example:

from testslide.dsl import context

@context
def before_hooks(context):

  @context.before
  def define_list(self):
    self.value = []

  @context.before
  def append_one(self):
    self.value.append(1)

  @context.before
  def append_two(self):
    self.value.append(2)

  @context.example
  def before_hooks_are_executed_in_order(self):
    self.assertEqual(self.value, [1, 2])






Note

The name of the before functions does not matter. It is however useful to give them meaningful names, so they are easier to debug.



If code at a before hook fails (raises), test execution stops with a failure.

Typically, before hooks are used to:


	Setup the object being tested.


	Setup any dependencies, including mocks.




You can alternatively use lambdas as well:

@context
def before_hooks(context):

  context.before(lambda self: self.value = [])







After

The after hook is pretty much the opposite of before hooks: they are called after each example, in the opposite order defined:

from testslide.dsl import context
import os

@context
def After_hooks(context):

  @context.after
  def do_call(self):
    os.remove('/tmp/something')

  @context.example
  def passes(self):
    self.mock_callable(os, 'remove')\
      .for_call('/tmp/something')\
      .to_return_value(None)\
      .and_assert_called_once()

  @context.example
  def fails(self):
    self.mock_callable(os, 'remove')\
      .for_call('/tmp/WRONG')\
      .to_return_value(None)\
      .and_assert_called_once()





After hooks are typically used for:


	Executing things common to all examples (eg: calling the code that is being tested).


	Doing assertions common to all examples.


	Doing cleanup logic (eg: closing file descriptors).




You can also define after hooks from within examples:

@context.example
def can_define_after_hook(self):
  do_first_thing()

  @self.after
  def run_after_example_finishes(self):
    do_something_after_last_thing()

  do_last_thing()





Will run do_first_thing, do_last_thing then do_something_after_last_thing.


Aggregated failures

One important behavior of after hooks, is that they are always executed, regardless of any other failures in the test. This means, we get detailed result of each after hook failure:

from testslide.dsl import context

@context
def Show_aggregated_failures(context):

  @context.example
  def example_with_after_hooks(self):
    @self.after
    def assert_something(self):
      assert 1 == 2

    @self.after
    def assert_other_thing(self):
      assert 1 == 3





And its output:

Show aggregated failures
  example with after hooks: FAIL: AggregatedExceptions: empty example

Failures:

  1) Show aggregated failures: example with after hooks
    1) AssertionError:
      (...)
    2) AssertionError:
      (...)

Finished 1 examples in 0.0s
  Failed: 1








Around

Around hooks wrap around all before hooks, example code and after hooks:

from testslide.dsl import context
import os, tempfile

@context
def Around_hooks(context):

  @context.around
  def inside_tmp_dir(self, wrapped):
    with tempfile.TemporaryDirectory() as path:
      self.path = path
      original_path = os.getcwd()
      try:
        os.chdir(path)
        wrapped()
      finally:
        os.chdir(original_path)

  @context.example
  def code_inside_temporary_dir(self):
    assert os.getcwd() == self.path





In this example, every example in the context will run inside a temporary directory.

If you declare multiple around hooks, the first around hook wraps the next one and so on.

Typical use for around hooks are similar to when context manager would be useful:


	Rolling back DB transactions after each test.


	Closing open file descriptors.


	Removing temporary files.








            

          

      

      

    

  

    
      
          
            
  
Context Attributes and Functions

Other than Context Hooks, you can also configure contexts with any attributes or functions.


Attributes

You can set any arbitrary attribute from within any hook:

@context.before
def before(self):
  self.calculator = Calculator()





and refer it later on:

@context.example
def is_a_calculaor(self):
  assert type(self.calculator) == Calculator






Attributes and sub-contexts

While it is very intuitive to do self.attr = "value", when used with sub-contexts there’s potential for confusion:

from testslide.dsl import context

@context
def top_context(context):

  @context.before
  def set_attr(self):
    self.attr = "top context value"
    self.top_context_dict = {}
    self.top_context_dict["attr"] = self.attr

  @context.example
  def attr_is_the_same(self):
    self.assertEqual(self.attr, self.top_context_dict["attr"])

  @context.sub_context
  def sub_context(context):
    @context.before
    def reset_attr(self):
      self.attr = "sub context value"
      self.sub_context_dict = {}
      self.sub_context_dict["attr"] = self.attr

    @context.example
    def attr_is_the_same(self):
      self.assertEqual(self.attr, self.sub_context_dict["attr"])  # OK
      self.assertEqual(self.attr, self.top_context_dict["attr"])  # Boom!





In this example self.attr will have different values at top_context and sub_context resulting in some confusion in the assertions. These can be hard to spot in more complex scenarios, so TestSlide prevents attributes from being reset and the example above actually fails with AttributeError: Attribute 'attr' is already set..

The solution to this problem are memoized attributes.



Memoized Attributes

Memoized attributes are similar to a @property but with 2 key differences:


	Its value is materialized and cached on the first access.


	When multiple contexts define the same memoized attribute the inner-most overrides the outer-most definitions.




Let’s see it in action:

from testslide.dsl import context

@context
def memoized_attributes(context):

  @context.memoize
  def memoized_list(self):
    return []

  @context.example
  def can_access_memoized_attributes(self):
    assert len(self.memoized_list) == 0  # list is materialized
    self.memoized_list.append(True)
    assert len(self.memoized_list) == 1  # same list is refereed





For the sake of convenience, memoized attributes can also be defined using lambdas:

context.memoize('memoized_list', lambda self: [])





or in bulk:

context.memoize(
  memoized_list=lambda self: [],
  yet_another_memoized_list=lambda self: [],
)





In some cases, delaying the materialization of the attribute is not desired and it can be forced to happen unconditionally from within a before hook:

@context.memoize_before
def memoized_list(self):
  return []






Overriding Memoized Attributes

As memoized attributes from parent contexts can be overridden by defining a new value from an inner context, it not only gives consistency on the attribute value, but also allows for some powerful composition:

from testslide.dsl import context
from testslide import StrictMock

@context
def Composition(context):

  context.memoize('attr_value', lambda self: 'default value')

  @context.memoize
  def mock(self):
    mock = StrictMock()
    mock.attr = self.attr_value
    return mock

  @context.example
  def sees_default_value(self):
    self.assertEqual(self.mock.attr, 'default value')

  @context.sub_context
  def With_different_value(context):

    context.memoize('attr_value', lambda self: 'different value')

    @context.example
    def sees_different_value(self):
      self.assertEqual(self.mock.attr, 'different value')





This means, sub-contexts can be used to “tweak” values from a parent context.





Functions

You can define arbitrary functions that can be called from test code with the @context.function decorator:

@context
def Arbitrary_helper_functions(context):

  @context.memoize
  def some_list(self):
    return []

  # You can define arbitrary functions to call later
  @context.function
  def my_helper_function(self):
    self.some_list.append('item')
    return "I'm helping!"

  @context.example
  def can_call_helper_function(self):
    assert "I'm helping!" == self.my_helper_function()
    assert ['item'] == self.some_list









            

          

      

      

    

  

    
      
          
            
  
Skip and Focus

The Test Runner supports focusing and skipping examples. Let’s see how to do it with TestSlide’s DSL.


Focus

You can focus either the top level context, sub contexts or examples by prefixing their declaration with a f:

from testslide.dsl import context, fcontext, xcontext

@context
def Focusing(context):

  @context.example
  def not_focused_example(self):
    pass

  @context.fexample
  def focused_example(self):
    pass

  @context.sub_context
  def Not_focused_subcontext(context):

    @context.example
    def not_focused_example(self):
      pass

  @context.fsub_context
  def Focused_context(context):

    @context.example
    def inherits_focus_from_context(self):
      pass





And when run with --focus:

Focusing
  *focused example: PASS
  *Focused context
    *inherits focus from context: PASS

Finished 2 example(s) in 0.0s
  Successful:  2
  Not executed:  2







Skip

Skipping works just the same, but you have to use a x:

from testslide.dsl import context, fcontext, xcontext

@context
def Skipping(context):

  @context.example
  def not_skipped_example(self):
    pass

  @context.xexample
  def skipped_example(self):
    pass

  @context.example(skip=True)
  def skipped_example_from_arg(self):
    pass

  @context.example(skip_unless=False)
  def skipped_example_from_unless_arg(self):
    pass

  @context.sub_context
  def Not_skipped_subcontext(context):

    @context.example
    def not_skipped_example(self):
      pass

  @context.xsub_context
  def Skipped_context(context):

    @context.example
    def inherits_skip_from_context(self):
      pass





Skipping
  not skipped example: PASS
  skipped example: SKIP
  skipped example from arg: SKIP
  skipped example from unless arg: SKIP
  Not skipped subcontext
    not skipped example: PASS
  Focused context
    inherits focus from context: SKIP

Finished 4 example(s) in 0.0s
  Successful:  2
  Skipped:  2









            

          

      

      

    

  

    
      
          
            
  
unittest.TestCase Integration

TestSlide’s DSL builtin integration with Python’s unittest [https://docs.python.org/3/library/unittest.html].


Assertions

TestSlide (currently) has no assertion framework. It comes however, with all self.assert* methods that you find at unittest.TestCase (see the docs [https://docs.python.org/3/library/unittest.html#assert-methods]):

@context
def unittest_assert_methods(context):

  @context.example
  def has_assert_true(self):
    self.assertTrue(True)







Reusing existing unittest.TestCase setUp

You can leverage existing unittest.TestCase classes, and use their setup logic to with TestSlide’s DSL:

@context
def merging_test_cases(context):

  context.merge_test_case(SomePreExistingTestCase, 'legacy_test_case')

  @context.example
  def can_access_the_test_case(self):
    self.legacy_test_case  # => SomePreExistingTestCase instance





merge_test_case will call all SomePreExistingTestCase test hooks (setUp, tearDown etc) for each example.

From each example (or hooks), you will have access to the TestCase instance, so you can access any of its methods or attributes.


Note

Only hooks are executed, no existing tests will be imported!







            

          

      

      

    

  

    
      
          
            
  
Async Support

TestSlide’s DSL supports asynchronous I/O [https://docs.python.org/3/library/asyncio.html] testing.

For that, you must declare all of these as async:


	Hooks: around, before and after.


	Examples.


	Memoize before.


	Functions.




like this:

from testslide.dsl import context

@context
def testing_async_code(context):
  @context.around
  async def around(self, example):
    await example()  # Note that this must be awaited!

  @context.before
  async def before(self):
    pass

  @context.after
  async def after(self):
    pass

  @context.memoize_before
  async def memoize_before(self):
    return "memoize_before"

  @context.function
  async def function(self):
    return "function"

  @context.example
  async def example(self):
    assert self.memoize_before == "memoize_before"
    assert self.function == "function"





The test runner will create a new event loop to execute each example.


Note

You can not mix async and sync stuff for the same example. If your example is async, then all its hooks and memoize before must also be async.




Note

It is not possible to support async @context.memoize. They depend on __getattr__ [https://docs.python.org/3/reference/datamodel.html#object.__getattr__] to work, which has no async support. Use @context.memoize_before instead.




Event Loop Health

Event loops [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio-event-loop] are the engine that runs Python async code. It works by alternating the execution between different bits of async code. Eg: when await is used, it allows the event loop to switch to another task. A requirement for this model to work is that async code must be “well behaved”, so that it does what it needs to do without impacting other tasks.

TestSlide DSL has specific checks that detect if tested async code is doing something it should not.


Not Awaited Coroutine

Every called coroutine must be awaited. If they are not, it means their code never got to be executed, which indicates a bug in the code. In this example, a forgotten to be awaited coroutine triggers a test failure, despite the fact that no direct failure was reported by the test:

import asyncio
from testslide.dsl import context

@context
def Not_awaited_coroutine(context):
  @context.example
  async def awaited_sleep(self):
    await asyncio.sleep(1)

  @context.example
  async def forgotten_sleep(self):
    asyncio.sleep(1)





$ testslide not_awaited_coroutine.py
Not awaited coroutine
  awaited sleep
  forgotten sleep: RuntimeWarning: coroutine 'sleep' was never awaited

Failures:

  1) Not awaited coroutine: forgotten sleep
    1) RuntimeWarning: coroutine 'sleep' was never awaited
    Coroutine created at (most recent call last)
      File "/opt/python/lib/python3.7/site-packages/testslide/__init__.py", line 394, in run
        self._async_run_all_hooks_and_example(context_data)
      File "/opt/python/lib/python3.7/site-packages/testslide/__init__.py", line 334, in _async_run_all_hooks_and_example
        asyncio.run(coro, debug=True)
      File "/opt/python/lib/python3.7/asyncio/runners.py", line 43, in run
        return loop.run_until_complete(main)
      File "/opt/python/lib/python3.7/asyncio/base_events.py", line 566, in run_until_complete
        self.run_forever()
      File "/opt/python/lib/python3.7/asyncio/base_events.py", line 534, in run_forever
        self._run_once()
      File "/opt/python/lib/python3.7/asyncio/base_events.py", line 1763, in _run_once
        handle._run()
      File "/opt/python/lib/python3.7/asyncio/events.py", line 88, in _run
        self._context.run(self._callback, *self._args)
      File "/opt/python/lib/python3.7/site-packages/testslide/__init__.py", line 244, in _real_async_run_all_hooks_and_example
        self.example.code, context_data
      File "/opt/python/lib/python3.7/site-packages/testslide/__init__.py", line 218, in _fail_if_not_coroutine_function
        return await func(*args, **kwargs)
      File "/home/fornellas/tmp/not_awaited_coroutine.py", line 12, in forgotten_sleep
        asyncio.sleep(1)
      File "/opt/python/lib/python3.7/contextlib.py", line 119, in __exit__
        next(self.gen)

Finished 2 example(s) in 1.0s
  Successful: 1
  Failed: 1







Slow Callback

Async code must do their work in small chunks, properly awaiting other functions when needed. If an async function does some CPU intensive task that takes a long time to compute, or if it calls a sync function that takes a long time to return, the entirety of the event loop will be locked up. This means that no other code can be executed until this bad async function returns.

If during the test execution a task blocks the event loop, it will trigger a test failure, despite the fact that no direct failure was reported by the test:

import time
from testslide.dsl import context

@context
def Blocked_event_loop(context):
  @context.example
  async def blocking_sleep(self):
    time.sleep(1)





$ testslide blocked_event_loop.py
Blocked event loop
  blocking sleep: SlowCallback: Executing <Task finished coro=<_ExampleRunner._real_async_run_all_hooks_and_example() done, defined at /opt/python/lib/python3.7/site-packages/testslide/__init__.py:220> result=None created at /opt/python/lib/python3.7/asyncio/base_events.py:558> took 1.002 seconds

Failures:

  1) Blocked event loop: blocking sleep
    1) SlowCallback: Executing <Task finished coro=<_ExampleRunner._real_async_run_all_hooks_and_example() done, defined at /opt/python/lib/python3.7/site-packages/testslide/__init__.py:220> result=None created at /opt/python/lib/python3.7/asyncio/base_events.py:558> took 1.002 seconds
      During the execution of the async test a slow callback that blocked the event loop was detected.
      Tip: you can customize the detection threshold with:
        asyncio.get_running_loop().slow_callback_duration = seconds
      File "/opt/python/lib/python3.7/contextlib.py", line 119, in __exit__
        next(self.gen)

Finished 1 example(s) in 1.0s
  Failed: 1





Python’s default threshold for triggering this event loop lock up failure is 100ms. If your problem domain requires something smaller or bigger, you can easily customize it:

import asyncio
import time
from testslide.dsl import context

@context
def Custom_slow_callback_duration(context):
  @context.before
  async def increase_slow_callback_duration(self):
    loop = asyncio.get_running_loop()
    loop.slow_callback_duration = 2

  @context.example
  async def blocking_sleep(self):
    time.sleep(1)





$ testslide custom_slow_callback_duration.py
Custom slow callback duration
  blocking sleep

Finished 1 example(s) in 1.0s
  Successful: 1







Leaked Tasks

If your async code creates a task in the asyncio loop, but finished before that task has ended (ex. you forgot to await for it), testslide will catch it and fail the test.

This is enabled by default for async tests, but to get that behaviour also when running async code from sync tests, for example:

import asyncio
from testslide.dsl import context

@context
def my_test_suite(context):
      @context.example
      def test_something_async(self):
          asyncio.run(my_async_function())





Has to use the async_run_with_health_checks function from the context, so instead, you should use:

import asyncio
from testslide.dsl import context

@context
def my_test_suite(context):
      @context.example
      def test_something_async(self):
          self.async_run_with_health_checks(my_async_function())










            

          

      

      

    

  

    
      
          
            
  
Code Snippets

Here are code snippets, to save you time when writing tests.


Atom

Please refer Atom’s documentation [http://flight-manual.atom.io/using-atom/sections/snippets/] on how to use these.

'.source.python':
  ##
  ## TestSlide
  ##

  # Context
  '@context':
    'prefix': 'cont'
    'body': '@context\ndef ${1:context_description}(context):\n    ${2:pass}'
  '@fcontext':
    'prefix': 'fcont'
    'body': '@fcontext\ndef ${1:context_description}(context):\n    ${2:pass}'
  '@xcontext':
    'prefix': 'xcont'
    'body': '@xcontext\ndef ${1:context_description}(context):\n    ${2:pass}'
  '@context.sub_context':
    'prefix': 'scont'
    'body': '@context.sub_context\ndef ${1:context_description}(context):\n    ${2:pass}'
  '@context.fsub_context':
    'prefix': 'fscont'
    'body': '@context.fsub_context\ndef ${1:context_description}(context):\n    ${2:pass}'
  '@context.xsub_context':
    'prefix': 'xscont'
    'body': '@context.xsub_context\ndef ${1:context_description}(context):\n    ${2:pass}'
  '@context.shared_context':
    'prefix': 'shacont'
    'body': '@context.shared_context\ndef ${1:shared_context_description}(context):\n    ${2:pass}'

  # Example
  '@context.example':
    'prefix': 'exp'
    'body': '@context.example\ndef ${1:example_description}(self):\n    ${2:pass}'
  '@context.fexample':
    'prefix': 'fexp'
    'body': '@context.fexample\ndef ${1:example_description}(self):\n    ${2:pass}'
  '@context.xexample':
    'prefix': 'xexp'
    'body': '@context.xexample\ndef ${1:example_description}(self):\n    ${2:pass}'

  # Hooks
  '@context.before':
    'prefix': 'befo'
    'body': '@context.before\ndef ${1:before}(self):\n    ${2:pass}'
  '@context.after':
    'prefix': 'aft'
    'body': '@context.after\ndef ${1:after}(self):\n    ${2:pass}'
  '@context.around':
    'prefix': 'aro'
    'body': '@context.around\ndef ${1:around}(self, bef_aft_example):\n    ${2:pass  # before example}\n    bef_aft_example()\n    ${3:pass  # after example}'

  # Attributes
  '@context.memoize':
    'prefix': 'memo'
    'body': '@context.memoize\ndef ${1:attribute_name}(self):\n    ${2:pass}'
  '@context.function':
    'prefix': 'cfunc'
    'body': '@context.function\ndef ${1:function_name}(self):\n    ${2:pass}'









            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  _static/testslide_logo.png
||E TestSlide





_static/minus.png





_static/plus.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          TestSlide
        


        		
          Test Runner
          
            		
              Listing Available Tests
            


            		
              Multiple Failures Report
            


            		
              Failing Fast
            


            		
              Focus and Skip
            


            		
              Path Simplification
            


            		
              Internal Stack Trace
            


            		
              Shuffled Execution
            


            		
              Slow Imports Profiler
            


            		
              Code Coverage
            


            		
              Tip: Automatic Test Execution
            


          


        


        		
          StrictMock
          
            		
              Yet Another Mock?
            


            		
              Thorough API Validations
              
                		
                  Safe By Default
                


                		
                  Attribute Existence
                


                		
                  Attribute Type
                


                		
                  Method Signature
                


                		
                  Method Argument Type
                


                		
                  Method Return Type
                


                		
                  Setting Methods With Callables
                


                		
                  Setting Async Methods With Coroutines
                


              


            


            		
              Configuration
              
                		
                  Naming
                


                		
                  Template Class
                


                		
                  Setting Regular Attributes
                


                		
                  Setting Methods
                


                		
                  Setting Magic Methods
                


                		
                  Runtime Attributes
                


                		
                  Default Context Manager
                


                		
                  Signature Validation
                


                		
                  Type Validation
                


              


            


            		
              Misc Functionality
            


          


        


        		
          Patching
          
            		
              patch_attribute()
              
                		
                  Type Validation
                


              


            


            		
              mock_callable()
              
                		
                  Defining a Target
                


                		
                  Defining Accepted Calls
                


                		
                  Defining Call Behavior
                


                		
                  Defining Call Assertions
                


                		
                  Cheat Sheet
                


                		
                  Magic Methods
                


                		
                  Type Validation
                


                		
                  Test Framework Integration
                


              


            


            		
              mock_async_callable()
              
                		
                  .with_implementation()
                


                		
                  .with_wrapper()
                


                		
                  Implicit Coroutine Return
                


                		
                  Test Framework Integration
                


              


            


            		
              mock_constructor()
              
                		
                  Type Validation
                


                		
                  Caveats
                


                		
                  Test Framework Integration
                


              


            


            		
              Argument Matchers
              
                		
                  Logic Operations
                


                		
                  Integers
                


                		
                  Floats
                


                		
                  Strings
                


                		
                  Lists
                


                		
                  Dictionaries
                


                		
                  Collections
                


                		
                  Generic
                


              


            


            		
              Cheat Sheet
            


          


        


        		
          TestSlide’s DSL
          
            		
              Contexts and Examples
              
                		
                  Sub Examples
                


                		
                  Explicit names
                


              


            


            		
              Sharing Contexts
              
                		
                  Merging
                


                		
                  Nesting
                


                		
                  Parameterized shared contexts
                


              


            


            		
              Context Hooks
              
                		
                  Before
                


                		
                  After
                


                		
                  Around
                


              


            


            		
              Context Attributes and Functions
              
                		
                  Attributes
                


                		
                  Functions
                


              


            


            		
              Skip and Focus
              
                		
                  Focus
                


                		
                  Skip
                


              


            


            		
              unittest.TestCase Integration
              
                		
                  Assertions
                


                		
                  Reusing existing unittest.TestCase setUp
                


              


            


            		
              Async Support
              
                		
                  Event Loop Health
                


              


            


          


        


        		
          Code Snippets
          
            		
              Atom
            


          


        


      


    
  

_images/test_pass.png
$ testslide backup_test.py
backup_test.TestBackupDelete
test_delete_from_storage

Finished 1 example(s) in 0.0s:
Successful: 1





_images/test_fail.png
$ testslide backup_test.py
backup_test.TestBackupDelete
test_delete_from_storage: AssertionError: calls did not match assertion.

Failures:

1) backup_test.TestBackupDelete: test_delete_from_storage
1) AssertionError: calls did not match assertion.
<StrictMock ©x7F6E88070F98 template=storage.Client>, 'delete’:
expected: called exactly 1 time(s) with arguments:
('/file/to/delete’,)
{
received: 0 call(s)
File "/opt/python/lib/python3.6/unittest/case.py”, line 59, in testPartExecutor
yield
File "/opt/python/lib/python3.6/unittest/case.py", line 646, in doCleanups
function(*args, **kwargs)

Finished 1 example(s) in 0.0s:
Failed: 1





